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Instant Coffee: How To Eliminate
Java Performance Warmup

Simon Ritter, Deputy CTO, Azul
Code. Cloud. Community.
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Solution 1:
Ahead of Time (AOT) Compilation




Compile Java Source Direct to Native Code

 Traditional approach: Ahead of time, static compilation

* No interpreting bytecodes

* No analysis of hotspots

* No runtime compilation of code placing heavy load on CPUs

« Start at full speed, straight away

* This is the Graal native image approach

* Problem solved, right?




Not So Fast

« AQT is, by definition, static

* And code is compiled before it is run

* The compiler has no knowledge of how the code will actually run
o Profile guided optimisation has been around for a long time and only helps partially




Speculative Optimisation Example:
Branch Analysis

int computeMagnitude(int value) {
if (value > 9)
bias = computeBias(value);
else
bias = 1;

return Math.logl@(bias + 99);
}

Profiling data shows that value (so far) has never been greater than 9



Speculative Optimisation Example:
Branch Analysis

int computeMagnitude(int value) {
if (value > 9)
uncommonTrap(); // Deoptimise

return 2; // Math.logl0(100)
}

Assume that, based on profiling, value will continue to be less than 10
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When To Use AOT

* Ephemeral microservices
o Startup and warmup time is more important than overall speed

o Garbage collection is usually a non-issue

« Resource constrained services

o E.g.2 vcore container

o JIT compilation will significantly reduce throughput during warmup
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Solution 2:
Store JIT Compilation Data




Azul Prime ReadyNow

* Run the application until its warmed up

» Take a profile
o All currently loaded classes
o All currently initialised classes
o JIT profiling data
o Deoptimisations that occurred

o A copy of all compiled code

* Restart application
o Load and initialise all required classes
o Load code or compile methods

o All before main()
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Solution 3:
Decouple The JIT Compiler




JIT Compilation Has Cost

JIT is CPU intensive

o The work has to be done concurrently with the application workload

Better optimisations deliver better performance (throughput)

o Butrequire more time, compute power and memory

This is fine if we have a powerful machine
o E.g. 64 vcores and 64GB RAM

Less powerful environments can be problematic
o E.g.2vcore container with 2GB RAM
o Heavily optimised JIT can become prohibitive by degrading throughput
o Even resulin OOM errors

Often we end up with a compromise




Speed and CPU Usage Over Time

» 2 \Vcore container
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Speed and CPU Usage Over Time

» 2 \Vcore container
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And Made It A Cloud-Based Resource

Cloud Native Compiler




Speed and CPU Usage Over Time

» 2 \Vcore container
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Speed and CPU Usage Over Time

» 2 \Vcore container
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Speed and CPU Usage Over Time

» 2 \Vcore container
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Isn't This Just Shifting The Cost?

Well, Yes...

But we are shifting it to a much more efficient place

When a JVM optimizes locally, it must carry dedicated resources to do so

When outsourced to a Cloud Native Compiler
o The resources are shared and reused

o The resources can be elastic

Compiled code can be cached
o The JIT now effectively has a memory across runs
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Solution 4:
Save The Whole Application State




Co-ordinated Resume In Userspace

* Linux project

e Basicidea

o Freeze a running application

Pause program counter

o Create a snapshot of the applications state (as a set of files)

o At some later point, use those files to restart the application from the same point

Potentially, on a different physical machine

CPU

Registers

Input

> Output

Memory




Co-ordinated Restore at Checkpoint (CRaC)

» Let's make the application aware it is being checkpointed and restored

Aware of checkpoint Aware of restore
being created happening
Application running H B B B Application running

« CRaC also enforces more restrictions on a checkpointed application

o No open files or sockets

o Checkpoint will be aborted if any are found




Using CRaC API

» Resource objects need to be registered with a Context so that they can receive notifications

« There is a global Context accessible via the static getGlobalContext() method of the Core class

_ ,/ <<Abstract>> A
( Core Context
L getGlobalContext() register(Resource)

Y, & 4 /

<<Interface>>
Resource

beforeCheckpoint()
afterRestore()




Does It Work? POC Results
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Summary




Solving The JVM Warmup Problem

* No one solution will fit all situations

« AQOT is good for fast startup/small footprint in ephemeral services
* ReadyNow provides memory of JIT across runs

» Cloud Native Compiler offloads JIT workload

« CRaC restarts an application from a known point

* Project Leyden is looking at approaches that include those above as well as other ideas




Thank You.

Simon Ritter, Deputy CTO

@speakjava
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