5 Microsoft

Instant Coffee: How To Eliminate
Java Performance Warmup

Simon Ritter, Deputy CTO, Azul
Code. Cloud. Community.

JVM Performance Graph

Speed
(with contribution by optimization level)

JVM Performance Graph

Third run

Second run

First run

Speed Speed

il ion by optimizati

Speed
ibution by optimizati

level)

jon by optimizati

(with contrib

level)

Interpreted = Tierl (profiling) = Optimized

(with

level)

(with

Interpreted = Tier1 (profiling) = Optimized

Interpreted = Tier1 (profiling) = Optimized

JVM Performance Graph

First run Second run Third run

Speed Speed Speed
(with contribution by optimization level) (with contribution by optimization level) (with contribution by optimization level)

08 - 08 08
0s 05 06 -]
04 04 - H 04 - |
02 02 | = 02 - a
o o o
000 1000 2000 3000 000 5000 6000 7000 8000 9000 10000 000 1000 2000 3000 000 5000 6000 7000 8000 9000 10000 000 1000 2000 3000 4000 5000 6000 2000 8000 2000 10000

Interpreted = Tier1 (profiling) = Optimized Interpreted = Tier1 (profiling) = Optimized Interpreted = Tierl (profiling) = Optimized

azul

Solution 1:
Ahead of Time (AOT) Compilation

Compile Java Source Direct to Native Code

 Traditional approach: Ahead of time, static compilation

* No interpreting bytecodes

* No analysis of hotspots

* No runtime compilation of code placing heavy load on CPUs

« Start at full speed, straight away

* This is the Graal native image approach

* Problem solved, right?

Not So Fast

« AQT is, by definition, static

* And code is compiled before it is run

* The compiler has no knowledge of how the code will actually run
o Profile guided optimisation has been around for a long time and only helps partially

Speculative Optimisation Example:
Branch Analysis

int computeMagnitude(int value) {
if (value > 9)
bias = computeBias(value);
else
bias = 1;

return Math.logl@(bias + 99);
}

Profiling data shows that value (so far) has never been greater than 9

Speculative Optimisation Example:
Branch Analysis

int computeMagnitude(int value) {
if (value > 9)
uncommonTrap(); // Deoptimise

return 2; // Math.logl0(100)
}

Assume that, based on profiling, value will continue to be less than 10

JVM Performance

Speed
(with contribution by optimization level)

l4

1.2 — —

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 8000 90.00 100.00

Interpreted Tierl (profiling) = Optimized

When To Use AOT

* Ephemeral microservices
o Startup and warmup time is more important than overall speed

o Garbage collection is usually a non-issue

« Resource constrained services

o E.g.2 vcore container

o JIT compilation will significantly reduce throughput during warmup

azul

Solution 2:
Store JIT Compilation Data

Azul Prime ReadyNow

* Run the application until its warmed up

» Take a profile
o All currently loaded classes
o All currently initialised classes
o JIT profiling data
o Deoptimisations that occurred

o A copy of all compiled code

* Restart application
o Load and initialise all required classes
o Load code or compile methods

o All before main()

ReadyNow Startup Time

Without ReadyNow!

Performance

Time

With ReadyNow!

Performance

\ Time

Class loading, initialising
and compile time

azul

Solution 3:
Decouple The JIT Compiler

JIT Compilation Has Cost

JIT is CPU intensive

o The work has to be done concurrently with the application workload

Better optimisations deliver better performance (throughput)

o Butrequire more time, compute power and memory

This is fine if we have a powerful machine
o E.g. 64 vcores and 64GB RAM

Less powerful environments can be problematic
o E.g.2vcore container with 2GB RAM
o Heavily optimised JIT can become prohibitive by degrading throughput
o Even resulin OOM errors

Often we end up with a compromise

Speed and CPU Usage Over Time

» 2 \Vcore container

Throughput over time

Throughput (Kops per second)

0
0 200 o 0 800 1000 1200 1000 1600
Elapsed time (sec)
—Plain
CPU use over time
250.00%
200.00%
150.00%
o |
= \
2 | Lo , 1 |
5] e T e T T a7 W I B T VAW VTS WA PR
100.00%
s000%
0.00%
o m) &0

a0 1000 1200 1400
Elapsed time (sec)

——Plain

Speed and CPU Usage Over Time

» 2 \Vcore container

Throughput over time

- o

-

Throughput (Kops per second)

e
8

400 600 800 1000 1200 1400 1600

Elapsed time (sec)

—Plain —optimized

CPU use over time

250.00%

20000%

Wl

1
[|
150.00% '\‘
|
\

CPU %

\ AJ | | . A L i I h A J J
A A AR N LA AN AR A A AN WIS e PN iy WA AR v sl > T v 0 v < v \ v ¥
100.00%

5000%

0 200 400 600 200 1000 1200 1400

Elapsed time (sec)

—Plain —optimized

And Made It A Cloud-Based Resource

Cloud Native Compiler

Speed and CPU Usage Over Time

» 2 \Vcore container

Throughput over time

Throughput (Kops per second)

2
8

800 1000 1200

Elapsed time (sec)
—Plain —optimized
CPU use over time
200.00% \
VIV
| 1
| ' ‘I
150.00% -‘
® \
2 | | I | .)
5] [NSSNVEL ¥ NOWY PR PN VISR) T U PRI W LA N SRIVATIN TIPTL WA AN VTR VPR 'S N b A Lo otomdiome g
1mom
50.00%

Elapsed time (sec)

——Plain —optimized

Speed and CPU Usage Over Time

» 2 \Vcore container

Throughput over time

ww\\fj B

Throughput (Kops per second)

0 200 400 600 800 1000 1200 1400 1600

Elapsed time (sec)

—Plain —optimized optimized w/Cloud Native Com piler

CPU use over time

25000%

20000%

15000%
> A- M ﬂ‘ A A h
o]
5 P’\ A WA TRV »MA'\AA.A;A Al A Y _— .
¢ gy e bissgebodod Bandi bl b o e oaflipdosgpirasct oo sttt o Y ST SV ISFIPRSE IR R Serprpry

100.00%

s000%

0.00%

o 200 400 600 a00 1000 1200 1400 1600

Elapsed time (sec)

—Plain ——optimized optimized w/Cloud Native Compiler

Speed and CPU Usage Over Time

» 2 \Vcore container

Throughput over time

&
7
o
c
¢
i/
5 s
g I
@
Q
Q4
B
5
2
£
.l |
3
2,
= A
iy
1 |
U
0 200 00 600 800 1000 1200 1400 1600
Elapsed time (sec)
—Plain optimized w/Cloud Native Compiler
CPU use over time
250.00%
w000 |y
\
A ATURTTS
| 1
I |
150.00% \
o \
x® |
> \
a A LA ‘I A | " A A
= AP v v Ry o toproronpbasnrdloneebnrimon v v < <PANHOIG o W i At %
100.00%
5000%
0.00%
0 200 400 600 a0 1000 1200 1400 1600

Elapsed time (sec)

—Plain optimized w/Cloud Native Compiler

Isn't This Just Shifting The Cost?

Well, Yes...

But we are shifting it to a much more efficient place

When a JVM optimizes locally, it must carry dedicated resources to do so

When outsourced to a Cloud Native Compiler
o The resources are shared and reused

o The resources can be elastic

Compiled code can be cached
o The JIT now effectively has a memory across runs

azul

Solution 4:
Save The Whole Application State

Co-ordinated Resume In Userspace

* Linux project

e Basicidea

o Freeze a running application

Pause program counter

o Create a snapshot of the applications state (as a set of files)

o At some later point, use those files to restart the application from the same point

Potentially, on a different physical machine

CPU

Registers

Input

> Output

Memory

Co-ordinated Restore at Checkpoint (CRaC)

» Let's make the application aware it is being checkpointed and restored

Aware of checkpoint Aware of restore
being created happening
Application running H B B B Application running

« CRaC also enforces more restrictions on a checkpointed application

o No open files or sockets

o Checkpoint will be aborted if any are found

Using CRaC API

» Resource objects need to be registered with a Context so that they can receive notifications

« There is a global Context accessible via the static getGlobalContext() method of the Core class

_ ,/ <<Abstract>> A
(Core Context
L getGlobalContext() register(Resource)

Y, & 4 /

<<Interface>>
Resource

beforeCheckpoint()
afterRestore()

Does It Work? POC Results

Time to first operation

OpenJDK s
OpenJDK on CRaC mmm

3898

spring-boot 38
6

micronaut F1001
xml-transform PM&&

o

1000 2000 3000 4000 5000

ms

azul

Summary

Solving The JVM Warmup Problem

* No one solution will fit all situations

« AQOT is good for fast startup/small footprint in ephemeral services
* ReadyNow provides memory of JIT across runs

» Cloud Native Compiler offloads JIT workload

« CRaC restarts an application from a known point

* Project Leyden is looking at approaches that include those above as well as other ideas

Thank You.

Simon Ritter, Deputy CTO

@speakjava

	Slide 1: Instant Coffee: How To Eliminate Java Performance Warmup
	Slide 2: JVM Performance Graph
	Slide 3: JVM Performance Graph
	Slide 4: JVM Performance Graph
	Slide 5: Solution 1: Ahead of Time (AOT) Compilation
	Slide 6: Compile Java Source Direct to Native Code
	Slide 7: Not So Fast
	Slide 8: Speculative Optimisation Example: Branch Analysis
	Slide 9: Speculative Optimisation Example: Branch Analysis
	Slide 10: JVM Performance
	Slide 11: When To Use AOT
	Slide 12: Solution 2: Store JIT Compilation Data
	Slide 13: Azul Prime ReadyNow
	Slide 14: ReadyNow Startup Time
	Slide 15: Solution 3: Decouple The JIT Compiler
	Slide 16: JIT Compilation Has Cost
	Slide 17: Speed and CPU Usage Over Time
	Slide 18: Speed and CPU Usage Over Time
	Slide 19: And Made It A Cloud-Based Resource
	Slide 20: Speed and CPU Usage Over Time
	Slide 21: Speed and CPU Usage Over Time
	Slide 22: Speed and CPU Usage Over Time
	Slide 23: Isn't This Just Shifting The Cost?
	Slide 24: Solution 4: Save The Whole Application State
	Slide 25: Co-ordinated Resume In Userspace
	Slide 26: Co-ordinated Restore at Checkpoint (CRaC)
	Slide 27: Using CRaC API
	Slide 28: Does It Work? POC Results
	Slide 29: Summary
	Slide 30: Solving The JVM Warmup Problem
	Slide 31

